论文标题

稳定的Euler在3-Sphere和其他Sasakian 3-manifold上流动

Steady Euler flows on the 3-sphere and other Sasakian 3-manifolds

论文作者

Slobodeanu, Radu

论文摘要

我们在(圆形)3-Sphere上介绍了新的稳定的Euler溶液,这些溶液是由Khesin,Kuksin和Peralta-Salas提出的ANSATZ分叉的,表明这些先前已知的溶液未分离。我们还将此Ansatz扩展到任何Sasakian 3-manifold,例如Heisenberg Group和$ SL(2,\ Mathbb {r})$。

We present new steady Euler solutions on the (round) 3-sphere, that bifurcate from an ansatz proposed by Khesin, Kuksin and Peralta-Salas, showing that these previously known solutions are not isolated. We also extend this ansatz to any Sasakian 3-manifold, such as the Heisenberg group and $SL(2, \mathbb{R})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源