论文标题
对话搜索中的主题传播
Topic Propagation in Conversational Search
论文作者
论文摘要
在会话环境中,用户将她的多面信息需求表示为一系列自然语言问题,即话语。从给定的主题开始,对话通过用户话语和系统回复演变。由于自然语言的模棱两可,并且很难检测到可能的主题转移和语义关系,因此与对话中给定的话语相关的文档的检索是具有挑战性的。我们采用2019年TREC对话助理轨道(CAST)框架来实验模块化的体系结构表演:(i)主题感知的话语重写,(ii)为重写的话语检索候选段落,以及(iii)基于神经的候选人段落。我们对根据小型截止的传统IR指标进行评估的体系结构进行了全面的实验评估。实验结果表明,我们的技术的有效性为P@1的提高高达0.28(+93%),NDCG@3 W.R.T.演员基线。
In a conversational context, a user expresses her multi-faceted information need as a sequence of natural-language questions, i.e., utterances. Starting from a given topic, the conversation evolves through user utterances and system replies. The retrieval of documents relevant to a given utterance in a conversation is challenging due to ambiguity of natural language and to the difficulty of detecting possible topic shifts and semantic relationships among utterances. We adopt the 2019 TREC Conversational Assistant Track (CAsT) framework to experiment with a modular architecture performing: (i) topic-aware utterance rewriting, (ii) retrieval of candidate passages for the rewritten utterances, and (iii) neural-based re-ranking of candidate passages. We present a comprehensive experimental evaluation of the architecture assessed in terms of traditional IR metrics at small cutoffs. Experimental results show the effectiveness of our techniques that achieve an improvement up to 0.28 (+93%) for P@1 and 0.19 (+89.9%) for nDCG@3 w.r.t. the CAsT baseline.