论文标题

部分可观测时空混沌系统的无模型预测

Video Contents Understanding using Deep Neural Networks

论文作者

Toutiaee, Mohammadhossein, Keshavarzi, Abbas, Farahani, Abolfazl, Miller, John A.

论文摘要

我们提出了一种新颖的转移学习应用程序,以对多个类别进行视频框架序列进行分类。这是一个预配合的模型,不需要训练新鲜的CNN。这种表示是通过“深神经网络”(DNN)的出现来实现的,如今许多研究人员正在研究。我们使用对象检测技术进行比较,将经典方法用于视频分类任务,例如“ Google Video Intelligence API”,这项研究将进行有关这些体系结构在有雾或多雨的天气条件下如何执行的实验。视频收集的实验评估表明,新提出的分类器比现有解决方案实现了卓越的性能。

We propose a novel application of Transfer Learning to classify video-frame sequences over multiple classes. This is a pre-weighted model that does not require to train a fresh CNN. This representation is achieved with the advent of "deep neural network" (DNN), which is being studied these days by many researchers. We utilize the classical approaches for video classification task using object detection techniques for comparison, such as "Google Video Intelligence API" and this study will run experiments as to how those architectures would perform in foggy or rainy weather conditions. Experimental evaluation on video collections shows that the new proposed classifier achieves superior performance over existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源