论文标题

6G无线通信网络中有关机器学习的白皮书

6G White Paper on Machine Learning in Wireless Communication Networks

论文作者

Ali, Samad, Saad, Walid, Rajatheva, Nandana, Chang, Kapseok, Steinbach, Daniel, Sliwa, Benjamin, Wietfeld, Christian, Mei, Kai, Shiri, Hamid, Zepernick, Hans-Jürgen, Chu, Thi My Chinh, Ahmad, Ijaz, Huusko, Jyrki, Suutala, Jaakko, Bhadauria, Shubhangi, Bhatia, Vimal, Mitra, Rangeet, Amuru, Saidhiraj, Abbas, Robert, Shao, Baohua, Capobianco, Michele, Yu, Guanghui, Claes, Maelick, Karvonen, Teemu, Chen, Mingzhe, Girnyk, Maksym, Malik, Hassan

论文摘要

这份白皮书的重点是无线通信中的机器学习(ML)。 6G无线通信网络将通过为人类和机器提供无处不在,可靠且近乎固有的无线连接来成为社会数字化转型的骨干。 ML研究的最新进展导致了各种新型技术,例如自动驾驶汽车和语音助手。由于高级ML模型,大数据集和高计算能力的可用性,因此可以创新。另一方面,对连接性的不断增长的需求将需要在6G无线网络中进行大量创新,而ML工具将在解决无线域中的问题中发挥重要作用。在本文中,我们概述了ML将如何影响无线通信系统的愿景。我们首先概述了在无线网络中具有最高潜力的ML方法。然后,我们讨论可以通过在网络的各个层中使用ML来解决的问题,例如物理层,中等访问层和应用程序层。使用ML对无线网络进行零接触优化是本文讨论的另一个有趣的方面。最后,在每个部分的末尾,提出了本节旨在回答的重要研究问题。

The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源