论文标题

基本亚组的换向因子:好奇和好奇的

Commutators of elementary subgroups: curiouser and curiouser

论文作者

Vavilov, Nikolai, Zhang, Zuhong

论文摘要

令$ r $是任何$ 1 $,$ n \ ge 3 $的关联戒指,让$ a,b $是$ r $的双面理想。在我们以前与Roozbeh Hazrat [17,15]的联合合作中,我们发现了混合换向器子组$ [E(N,R,A),E(N,R,B)] $的生成集。稍后,在[29,34]中,我们注意到我们先前的结果可以大大改善,并且$ [e(n,r,a),e(n,r,b)] $由1)由1)生成1)基本偶联$ z_ {ij {ij}(ij}(ab,c)= t_ {ij}(ij}(ij}(ij}(ij}(ij}(c)ji} $){ji}(ab)t_}(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)T_} $ z_ {ij}(ba,c)$,2)$ [t_ {ij}(a),t_ {ji}(b)] $,其中$ 1 \ le i \ le i \ neq j \ neq j \ le n $,$ a \ in a $,$ b \ in b $,$ b \ in b $ c \ in r $ in r $。稍后,在[33,35]中,我们注意到对于第二种类型的发电机,甚至可以修复一对索引$(i,j)$也足够了。在这里,我们改善了上述结果,朝着另一个完全出乎意料的方向改进,并证明了$ [e(n,r,a),e(n,r,b)] $是由基本换向器$ [t_ {ij}(a),t_ {hk}(hk}(b)$产生的a $,$ b \ in B $。这使我们能够修改相对本地化的技术,尤其是为了提供许多最新结果的简短证明,例如生成部分相关的基本组$ e(n,a)^{e(n,b)} $,%% $ e(n,ab+ba)$ e(n,ab+ba)$ [e(n,ab+ba)$ [e(n,ab r,r,r,r,a)等等。

Let $R$ be any associative ring with $1$, $n\ge 3$, and let $A,B$ be two-sided ideals of $R$. In our previous joint works with Roozbeh Hazrat [17,15] we have found a generating set for the mixed commutator subgroup $[E(n,R,A),E(n,R,B)]$. Later in [29,34] we noticed that our previous results can be drastically improved and that $[E(n,R,A),E(n,R,B)]$ is generated by 1) the elementary conjugates $z_{ij}(ab,c)=t_{ij}(c)t_{ji}(ab)t_{ij}(-c)$ and $z_{ij}(ba,c)$, 2) the elementary commutators $[t_{ij}(a),t_{ji}(b)]$, where $1\le i\neq j\le n$, $a\in A$, $b\in B$, $c\in R$. Later in [33,35] we noticed that for the second type of generators, it even suffices to fix one pair of indices $(i,j)$. Here we improve the above result in yet another completely unexpected direction and prove that $[E(n,R,A),E(n,R,B)]$ is generated by the elementary commutators $[t_{ij}(a),t_{hk}(b)]$ alone, where $1\le i\neq j\le n$, $1\le h\neq k\le n$, $a\in A$, $b\in B$. This allows us to revise the technology of relative localisation, and, in particular, to give very short proofs for a number of recent results, such as the generation of partially relativised elementary groups $E(n,A)^{E(n,B)}$, %% normality of $E(n,AB+BA)$ inside $[E(n,R,A),E(n,R,B)]$, multiple commutator formulas, commutator width, and the like.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源