论文标题

通过在电子健康记录中提供的临床访问收集的数据的复发事件分析

Recurrent Events Analysis With Data Collected at Informative Clinical Visits in Electronic Health Records

论文作者

Sun, Yifei, McCulloch, Charles E., Marr, Kieren A., Huang, Chiung-Yu

论文摘要

尽管越来越多地用作组装人群的数据资源,但电子健康记录(EHRS)构成了许多分析挑战。特别是,患者的健康状况会影响何时以及记录哪些数据,从而在收集的数据中产生采样偏差。在本文中,我们考虑使用EHR数据进行反复的事件分析。事件风险分析的常规回归方法通常需要在整个随访期间观察到协变量的值。在EHR数据库中,时间依赖性的协变量是间歇性测量的,在临床访问期间,这些访问的时机在取决于疾病过程的意义上是有益的。简单的方法,例如最后一次观察的前向方法,可能会导致估计。另一方面,复杂的关节模型需要对协变量过程的其他假设,并且不能轻易扩展以处理多个纵向预测指标。通过纳入估计观察时间过程得出的采样权重,我们基于反相反事件的半疗法比例率模型的基于反速率加权和核对核平滑的新估计程序。所提出的方法不需要对协变量过程的模型规格,并且可以轻松处理多个时间依赖的协变量。我们的方法应用于肾脏移植研究以进行例证。

Although increasingly used as a data resource for assembling cohorts, electronic health records (EHRs) pose many analytic challenges. In particular, a patient's health status influences when and what data are recorded, generating sampling bias in the collected data. In this paper, we consider recurrent event analysis using EHR data. Conventional regression methods for event risk analysis usually require the values of covariates to be observed throughout the follow-up period. In EHR databases, time-dependent covariates are intermittently measured during clinical visits, and the timing of these visits is informative in the sense that it depends on the disease course. Simple methods, such as the last-observation-carried-forward approach, can lead to biased estimation. On the other hand, complex joint models require additional assumptions on the covariate process and cannot be easily extended to handle multiple longitudinal predictors. By incorporating sampling weights derived from estimating the observation time process, we develop a novel estimation procedure based on inverse-rate-weighting and kernel-smoothing for the semiparametric proportional rate model of recurrent events. The proposed methods do not require model specifications for the covariate processes and can easily handle multiple time-dependent covariates. Our methods are applied to a kidney transplant study for illustration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源