论文标题
自动脸部加权检测
Deepfakes Detection with Automatic Face Weighting
论文作者
论文摘要
通过社交媒体平台越来越多地存在和操纵的多媒体。先进的视频操纵工具使能够产生高度现实的多媒体。尽管已经提出了许多方法来检测操作,但在研究环境中使用的数据集以外的数据进行评估时,其中大多数失败。为了解决此问题,DeepFake检测挑战(DFDC)提供了包含现实操作的视频和一个评估系统,以确保方法即使面对具有挑战性的数据,也可以确保方法快速准确地工作。在本文中,我们介绍了一种基于卷积神经网络(CNN)和经常性神经网络(RNN)的方法,该方法从视频中存在的面孔中提取视觉和时间特征以准确检测操纵。使用DFDC数据集评估该方法,与其他技术相比提供了竞争结果。
Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques.