论文标题
DeepMerge:将高红移合并星系与深神经网络分类
DeepMerge: Classifying High-redshift Merging Galaxies with Deep Neural Networks
论文作者
论文摘要
我们研究并证明了使用卷积神经网络(CNN)的使用,以区分模拟图像中的合并和非合并星系,这是第一次在高红移(即$ z = 2 $)下。我们从Illustris-1宇宙学模拟中提取合并和非合并星系的图像,并应用观察和实验噪声,这些噪声模仿了哈勃空间望远镜的模拟;没有噪声的数据形成一个“原始”数据集,并以噪声形式形成“嘈杂”数据集。 CNN的测试集分类精度为原始$ 79 \%$,噪音为$ 76 \%$。 CNN的表现优于随机森林分类器,该分类器比传统的一维统计方法(浓度,不对称,Gini,Gini,$ M_ {20} $统计等)优于该方法,这些方法在分类合并银河系时通常使用。我们还研究了分类器在合并状态和恒星形成率方面的选择效应,没有发现偏见。最后,我们从结果中提取毕业-CAM(梯度加权类激活映射),以进一步评估和询问分类模型的保真度。
We investigate and demonstrate the use of convolutional neural networks (CNNs) for the task of distinguishing between merging and non-merging galaxies in simulated images, and for the first time at high redshifts (i.e. $z=2$). We extract images of merging and non-merging galaxies from the Illustris-1 cosmological simulation and apply observational and experimental noise that mimics that from the Hubble Space Telescope; the data without noise form a "pristine" data set and that with noise form a "noisy" data set. The test set classification accuracy of the CNN is $79\%$ for pristine and $76\%$ for noisy. The CNN outperforms a Random Forest classifier, which was shown to be superior to conventional one- or two-dimensional statistical methods (Concentration, Asymmetry, the Gini, $M_{20}$ statistics etc.), which are commonly used when classifying merging galaxies. We also investigate the selection effects of the classifier with respect to merger state and star formation rate, finding no bias. Finally, we extract Grad-CAMs (Gradient-weighted Class Activation Mapping) from the results to further assess and interrogate the fidelity of the classification model.