论文标题

关于使用深度学习的骑自行车的方向检测的脆弱道路使用者的安全

On the safety of vulnerable road users by cyclist orientation detection using Deep Learning

论文作者

Garcia-Venegas, Marichelo, Mercado-Ravell, Diego A., Carballo-Monsivais, Carlos A.

论文摘要

在这项工作中,对于特别脆弱的道路使用者,骑自行车的人来说,使用深度学习的定向检测是公认的。知道骑自行车的人的方向非常相关,因为它为他们的未来轨迹提供了一个很好的概念,这对于避免在智能运输系统的背景下避免事故至关重要。使用预先训练的模型和Tensorflow的转移学习,我们介绍了文献中报道的对象检测的主要算法之间的性能比较,例如SSD,更快的R-CNN和R-FCN以及MobileNetV2,InceptionV2,Incemnetv2,resnet50,resnet50,resnet101功能提取器。此外,我们根据方向提出了具有八个不同类别的多级检测。为此,我们引入了一个名为“检测自行车”的新数据集,其中包含11,103张图像上的20,229个骑自行车的实例,该实例已根据骑自行车的方向进行标记。然后,训练了使用相同的深度学习方法来确定目标的标题。我们的实验结果和广泛的评估表明,所有研究的骑自行车者及其方向检测的方法令人满意地表现,尤其是使用RESNET50的更快的R-CNN证明是精确的,但要慢得多。同时,使用InceptionV2的SSD在精度和执行时间之间提供了良好的权衡,并且对于实时嵌入式应用程序而言,优先选择。

In this work, orientation detection using Deep Learning is acknowledged for a particularly vulnerable class of road users,the cyclists. Knowing the cyclists' orientation is of great relevance since it provides a good notion about their future trajectory, which is crucial to avoid accidents in the context of intelligent transportation systems. Using Transfer Learning with pre-trained models and TensorFlow, we present a performance comparison between the main algorithms reported in the literature for object detection,such as SSD, Faster R-CNN and R-FCN along with MobilenetV2, InceptionV2, ResNet50, ResNet101 feature extractors. Moreover, we propose multi-class detection with eight different classes according to orientations. To do so, we introduce a new dataset called "Detect-Bike", containing 20,229 cyclist instances over 11,103 images, which has been labeled based on cyclist's orientation. Then, the same Deep Learning methods used for detection are trained to determine the target's heading. Our experimental results and vast evaluation showed satisfactory performance of all of the studied methods for the cyclists and their orientation detection, especially using Faster R-CNN with ResNet50 proved to be precise but significantly slower. Meanwhile, SSD using InceptionV2 provided good trade-off between precision and execution time, and is to be preferred for real-time embedded applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源