论文标题

探索可解释的选择以控制抽象摘要

Exploring Explainable Selection to Control Abstractive Summarization

论文作者

Haonan, Wang, Yang, Gao, Yu, Bai, Lapata, Mirella, Heyan, Huang

论文摘要

像人类一样,文档摘要模型可以通过多种方式解释文档的内容。不幸的是,当今的神经模型在很大程度上是黑匣子,几乎没有解释他们如何或为什么以其方式产生摘要。因此,为了开始撬开黑匣子并将控制水平注入最终摘要的实质,我们开发了一个专注于解释性的新颖的精选框架。通过揭示句子之间的潜在中心性和互动,以及句子新颖性和相关性的分数,用户可以介绍一个模型所做的选择,并有机会指导这些选择以更理想的方向。一个新颖的配对矩阵捕获了句子的相互作用,中心性和属性得分,并且具有可调属性阈值的掩模使用户可以控制提取中可能包含哪些句子。抽象器中句子的注意机制可确保最终的摘要强调所需的内容。此外,编码器是适应性的,支持基于变压器和基于BERT的配置。在通过胭脂指标和两个人类评估评估的一系列实验中,ESCA在CNN/DailyMail和NYT50基准数据集上胜过八个最先进的模型。

Like humans, document summarization models can interpret a document's contents in a number of ways. Unfortunately, the neural models of today are largely black boxes that provide little explanation of how or why they generated a summary in the way they did. Therefore, to begin prying open the black box and to inject a level of control into the substance of the final summary, we developed a novel select-and-generate framework that focuses on explainability. By revealing the latent centrality and interactions between sentences, along with scores for sentence novelty and relevance, users are given a window into the choices a model is making and an opportunity to guide those choices in a more desirable direction. A novel pair-wise matrix captures the sentence interactions, centrality, and attribute scores, and a mask with tunable attribute thresholds allows the user to control which sentences are likely to be included in the extraction. A sentence-deployed attention mechanism in the abstractor ensures the final summary emphasizes the desired content. Additionally, the encoder is adaptable, supporting both Transformer- and BERT-based configurations. In a series of experiments assessed with ROUGE metrics and two human evaluations, ESCA outperformed eight state-of-the-art models on the CNN/DailyMail and NYT50 benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源