论文标题

ML-LBM:在多孔介质中的机器学习辅助流量模拟

ML-LBM: Machine Learning Aided Flow Simulation in Porous Media

论文作者

Da Wang, Ying, Chung, Traiwit, Armstrong, Ryan T., Mostaghimi, Peyman

论文摘要

从微尺度(细胞膜,过滤器,岩石)到宏观尺度(地下水,碳氢化合物储层和地热)及以后的宏观尺度,多孔介质中流体流的模拟具有许多应用。多孔介质中流量的直接模拟需要大量的计算资源才能在合理的时间范围内求解。概述了一种集成方法,该方法将流体流动(快速,有限的精度)与直接流量模拟(缓慢,高精度)结​​合在一起。在多孔介质的曲折流动路径中,基于卷积神经网络(CNN)的深度学习技术可准确估算稳态速度场(在所有轴中),并通过扩展宏观渗透性进行了宏观渗透率。该估计值可以按原样使用,也可以用作直接模拟中的初始条件,以达到一小部分计算时间的准确结果。在由相关场生成的2D和3D多孔介质的数据集上训练了一个封闭式的U-NET卷积神经网络,其稳态速度字段是根据直接LBM模拟计算得出的。灵敏度分析表明,网络精度取决于(1)域的曲折性,(2)卷积过滤器的大小,(3)使用距离图作为输入,(4)使用质量保护损失函数。从这些预测的字段中得出的渗透性估计值在80 \%的情况下达到90 \%的精度。进一步表明,当用于溶质传输模拟时,这些速度场易于误差。使用预测的速度场作为初始条件被证明可以加速直接流量模拟,从而在物理上真实的稳态条件下,较小的计算时间顺序。使用深度学习预测(或可能其他任何其他近似方法)来加速流动模拟到复杂的孔结构中的稳态,这显示出有望在技术推动边界的流体流动模型时显示出希望。

Simulation of fluid flow in porous media has many applications, from the micro-scale (cell membranes, filters, rocks) to macro-scale (groundwater, hydrocarbon reservoirs, and geothermal) and beyond. Direct simulation of flow in porous media requires significant computational resources to solve within reasonable timeframes. An integrated method combining predictions of fluid flow (fast, limited accuracy) with direct flow simulation (slow, high accuracy) is outlined. In the tortuous flow paths of porous media, Deep Learning techniques based on Convolutional Neural Networks (CNNs) are shown to give an accurate estimate of the steady state velocity fields (in all axes), and by extension, the macro-scale permeability. This estimate can be used as-is, or as initial conditions in direct simulation to reach a fully accurate result in a fraction of the compute time. A Gated U-Net Convolutional Neural Network is trained on a datasets of 2D and 3D porous media generated by correlated fields, with their steady state velocity fields calculated from direct LBM simulation. Sensitivity analysis indicates that network accuracy is dependent on (1) the tortuosity of the domain, (2) the size of convolution filters, (3) the use of distance maps as input, (4) the use of mass conservation loss functions. Permeability estimation from these predicted fields reaches over 90\% accuracy for 80\% of cases. It is further shown that these velocity fields are error prone when used for solute transport simulation. Using the predicted velocity fields as initial conditions is shown to accelerate direct flow simulation to physically true steady state conditions an order of magnitude less compute time. Using Deep Learning predictions (or potentially any other approximation method) to accelerate flow simulation to steady state in complex pore structures shows promise as a technique push the boundaries fluid flow modelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源