论文标题

严重的对流风暴环境声音的理想化物理模型

An idealized physical model for the severe convective storm environmental sounding

论文作者

Chavas, Daniel R, Dawson II, Daniel T

论文摘要

这项工作开发了一个理论模型,用于为严重的对流风暴环境而稳定的热力学和运动学曲线,这是建立在Agard和Emanuel(2017)中开发的两层静态能量框架之上的。该模型以静态能量为单位,并允许边界层独立变化,而自由对流层通过封盖反转分开。提出了一种算法,以应用该模型来生成严重对流风暴的数值模拟的声音,并将模型与Weisman和Klemp的模型进行比较并形成鲜明对比。然后,该模型适合与1999年5月3日龙卷风爆发相关的案例研究,并通过理想化的数值模拟实验来证明其潜在效用。长寿的超级电池成功地模拟了历史的声音,但没有类似的理论声音。然后进行两种示例实验,这些实验确实模拟了长期寿命的超级细胞:1)半理论实验,其中一部分理论声音被修改以匹配真实的声音(低级水分); 2)一个完全理论的实验,其中修改了模型的物理参数(自由层相对湿度)。总体而言,这种最小模型的构建是灵活的,并且可以根据需要进行其他修改。该模型提供了一个新颖的框架,该框架可能可用于测试严重的对流风暴如何依赖静水环境的垂直结构,以及将这些环境中的可变性与在气候系统中产生它们产生的物理过程的变异性。

This work develops a theoretical model for steady thermodynamic and kinematic profiles for severe convective storm environments, building off of the two-layer static energy framework developed in Agard and Emanuel (2017). The model is phrased in terms of static energy, and it allows for independent variation of the boundary layer and free troposphere separated by a capping inversion. An algorithm is presented to apply the model to generate a sounding for numerical simulations of severe convective storms, and the model is compared and contrasted with that of Weisman and Klemp. The model is then fit to a case-study sounding associated with the 3 May 1999 tornado outbreak, and its potential utility is demonstrated via idealized numerical simulation experiments. A long-lived supercell is successfully simulated with the historical sounding but not the analogous theoretical sounding. Two types of example experiments are then performed that do simulate a long-lived supercell: 1) a semi-theoretical experiment in which a portion of the theoretical sounding is modified to match the real sounding (low-level moisture); 2) a fully-theoretical experiment in which a model physical parameter is modified (free-tropospheric relative humidity). Overall, the construction of this minimal model is flexible and amenable to additional modifications as needed. The model offers a novel framework that may be useful for testing how severe convective storms depend on the vertical structure of the hydrostatic environment, as well as for linking variability in these environments to the physical processes that produce them within the climate system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源