论文标题

由潜在因素驱动的半参数时间序列模型

Semiparametric time series models driven by latent factor

论文作者

Maia, Gisele O., Barreto-Souza, Wagner, Bastos, Fernando S., Ombao, Hernando

论文摘要

我们通过假设由潜在因子过程驱动的准类似方法来介绍一类半参数时间序列模型。更具体地说,考虑到潜在过程,我们仅指定时间序列的条件均值和方差,并享有用于估计与均值相关的参数的准样函数。该提出的方法具有三个显着的特征:(i)对于潜在过程,时间序列的条件分布不假定参数形式; (ii)能够建模非负,计数,有限/二进制和实用值时间序列; (iii)散布参数不被认为是已知的。此外,我们获得了边际矩和时间序列过程的自相关函数的明确表达式,以便可以采用矩量的方法来估计分散参数以及与潜在过程相关的参数。提出了旨在检查拟议估计程序的模拟结果。关于失业率和降水时间序列的实际数据分析说明了我们方法的实践的势力。

We introduce a class of semiparametric time series models by assuming a quasi-likelihood approach driven by a latent factor process. More specifically, given the latent process, we only specify the conditional mean and variance of the time series and enjoy a quasi-likelihood function for estimating parameters related to the mean. This proposed methodology has three remarkable features: (i) no parametric form is assumed for the conditional distribution of the time series given the latent process; (ii) able for modelling non-negative, count, bounded/binary and real-valued time series; (iii) dispersion parameter is not assumed to be known. Further, we obtain explicit expressions for the marginal moments and for the autocorrelation function of the time series process so that a method of moments can be employed for estimating the dispersion parameter and also parameters related to the latent process. Simulated results aiming to check the proposed estimation procedure are presented. Real data analysis on unemployment rate and precipitation time series illustrate the potencial for practice of our methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源