论文标题
局部固体Riesz代数上的统计乘法收敛
Statistically multiplicative convergence on locally solid Riesz algebras
论文作者
论文摘要
在本文中,我们在代数乘法和固体拓扑的情况下介绍了局部固体Riesz代数中的统计乘法收敛序列。我们研究了这个概念,并给出了$ \ mathbb {st_m} $ - 有限序列的概念,而且,我们证明了这种收敛性与诸如拓扑空间中的顺序收敛和统计收敛之类的其他融合之间的某些关系。另外,我们提供了一些与半$ $ f $ - 代数有关的结果。
In this paper, we introduce the statistically multiplicative convergent sequences in locally solid Riesz algebras with respect to the algebra multiplication and the solid topology. We study on this concept and we give the notion of $\mathbb{st_m}$-bounded sequence, and also, we prove some relations between this convergence and the other convergences such as the order convergence and the statistical convergence in topological spaces. Also, we give some results related to semiprime $f$-algebras.