论文标题
偏斜式代数的模块类别的几何模型
A geometric model for the module category of a skew-gentle algebra
论文作者
论文摘要
在本文中,我们意识到偏斜的代数是与可允许的局部三角剖分相关的偏斜代数。基于这一点,我们在标记的允许曲线和某些不可分解的模块之间建立了两者的培训,通过标记的旋转来解释Auslander-Reiten翻译,并显示相交二数公式。作为一个应用程序,我们通过最大收集非划线标记的广义允许曲线来对支持$τ$进行分类。
In this article, we realize skew-gentle algebras as skew-tiling algebras associated to admissible partial triangulations of punctured marked surfaces. Based on this, we establish a bijection between tagged permissible curves and certain indecomposable modules, interpret the Auslander-Reiten translation via the tagged rotation, and show intersection-dimension formulas. As an application, we classify support $τ$-tilting modules via maximal collections of non-crossing tagged generalized permissible curves.