论文标题

Turán定理的确切稳定性

Exact stability for Turán's Theorem

论文作者

Korándi, Dániel, Roberts, Alexander, Scott, Alex

论文摘要

Turán的定理说,极好的$ k_ {r+1} $ - 免费图是$ r $ - 明确图。 ERDőS和Simonovits的稳定性定理表明,如果$ k_ {r+1} $ - 带有$ n $ VERTICES的免费图形接近最大$ t_r(n)$ edges,则接近$ r $ $ $ - 优点。在本文中,我们准确确定$ k_ {r+1} $ - 至少$ m $边缘的免费图形,与$ r $ - 分支最远,对于任何$ m \ ge t_r(n) - δ_rn^2 $。这扩展了Erdős,Győri和Simonovits的工作,并证明了Balogh,Clemen,Lavrov,Lidický和Pfender的猜想。

Turán's Theorem says that an extremal $K_{r+1}$-free graph is $r$-partite. The Stability Theorem of Erdős and Simonovits shows that if a $K_{r+1}$-free graph with $n$ vertices has close to the maximal $t_r(n)$ edges, then it is close to being $r$-partite. In this paper we determine exactly the $K_{r+1}$-free graphs with at least $m$ edges that are farthest from being $r$-partite, for any $m\ge t_r(n) - δ_r n^2$. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源