论文标题

多模光子卷积神经网络的波导上的可编程相变元面

Programmable Phase-change Metasurfaces on Waveguides for Multimode Photonic Convolutional Neural Network

论文作者

Wu, Changming, Yu, Heshan, Lee, Seokhyeong, Peng, Ruoming, Takeuchi, Ichiro, Li, Mo

论文摘要

对于机器学习算法,例如各种类型的神经网络,具有明显的速度和能量优势,如多种类型的神经网络,具有明显的速度和能量优势。集成的光子网络在执行矩阵矢量乘法(MVM)的模拟计算方面特别有力,因为它们为数据传输提供了无与伦比的速度和带宽密度。在集成光子设备中纳入非易失性相位变化材料可以实现不可或缺的编程和内存计算功能,以实现芯片光学计算。在这里,我们演示了一个多模光子计算核心,该核心由基于相变材料制成的元图组成的一系列可编程模式转换器组成。可编程转换器利用相变的相变材料GE-SB-TE的折射率变化,以控制波导空间模式,在模态对比度中,高精度高度为64个水平。该对比用于表示具有6位分辨率的矩阵元素以及正值和负值,以在神经网络算法中执行MVM计算。我们展示了一个光学卷积神经网络,该网络可以高精度执行图像处理和分类任务。具有广泛的操作带宽和紧凑的设备足迹,演示的多模光子芯对高通量光学神经网络的大规模光子处理器非常有前途。

Neuromorphic photonics has recently emerged as a promising hardware accelerator, with significant potential speed and energy advantages over digital electronics, for machine learning algorithms such as neural networks of various types. Integrated photonic networks are particularly powerful in performing analog computing of matrix-vector multiplication (MVM) as they afford unparalleled speed and bandwidth density for data transmission. Incorporating nonvolatile phase-change materials in integrated photonic devices enables indispensable programming and in-memory computing capabilities for on-chip optical computing. Here, we demonstrate a multimode photonic computing core consisting of an array of programable mode converters based on metasurface made of phase-change materials. The programmable converters utilize the refractive index change of the phase-change material Ge-Sb-Te during phase transition to control the waveguide spatial modes with a very high precision of up 64 levels in modal contrast. This contrast is used to represent the matrix elements, with 6-bit resolution and both positive and negative values, to perform MVM computation in neural network algorithms. We demonstrate an optical convolutional neural network that can perform image processing and classification tasks with high accuracy. With a broad operation bandwidth and a compact device footprint, the demonstrated multimode photonic core is very promising toward a large-scale photonic processor for high-throughput optical neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源