论文标题
无限自付迭代功能系统的尺寸光谱
Dimension spectrum of infinite self-affine iterated function systems
论文作者
论文摘要
给定一个无限的迭代功能系统(IFS)$ \ MATHCAL {F} $,我们定义了其尺寸频谱$ d(\ Mathcal {f})$,是一组实数,可以实现为$ \ Mathcal {f} $的某个子系统的维度。如果$ \ Mathcal {f} $是一个符号,则几位作者已经研究了维度频谱的属性。在本文中,当$ \ Mathcal {f} $是不合格的IF时,我们首次研究尺寸频谱的属性。特别是,与始终紧凑而完美的共形IF的维度光谱(由于Chousionis,Leykekhman和Urbański,Selecta 2019的结果),我们构建示例以表明$ d(\ Mathcal {f})$不必紧凑,并且可能包含隔离点。
Given an infinite iterated function system (IFS) $\mathcal{F}$, we define its dimension spectrum $D(\mathcal{F})$ to be the set of real numbers which can be realised as the dimension of some subsystem of $\mathcal{F}$. In the case where $\mathcal{F}$ is a conformal IFS, the properties of the dimension spectrum have been studied by several authors. In this paper we investigate for the first time the properties of the dimension spectrum when $\mathcal{F}$ is a non-conformal IFS. In particular, unlike dimension spectra of conformal IFS which are always compact and perfect (by a result of Chousionis, Leykekhman and Urbański, Selecta 2019), we construct examples to show that $D(\mathcal{F})$ need not be compact and may contain isolated points.