论文标题

凸非自然回归

Convex Nonparanormal Regression

论文作者

Woodbridge, Yonatan, Elidan, Gal, Wiesel, Ami

论文摘要

量化预测的不确定性,或者更普遍地估计后条件分布,是机器学习和统计数据的核心挑战。我们介绍了凸非抗性回归(CNR),这是一种有条件的非政治方法来应对此任务。 CNR涉及通过在高斯人上预定的非线性变换的丰富词典定义的后验优化。它可以符合任意的条件分布,包括多模式和非对称后代。对于分段线性词典的特殊但功能强大的情况,我们提供了后均值的封闭形式,可用于点的预测。最后,我们使用合成和现实世界数据证明了CNR比经典竞争者的优势。

Quantifying uncertainty in predictions or, more generally, estimating the posterior conditional distribution, is a core challenge in machine learning and statistics. We introduce Convex Nonparanormal Regression (CNR), a conditional nonparanormal approach for coping with this task. CNR involves a convex optimization of a posterior defined via a rich dictionary of pre-defined non linear transformations on Gaussians. It can fit an arbitrary conditional distribution, including multimodal and non-symmetric posteriors. For the special but powerful case of a piecewise linear dictionary, we provide a closed form of the posterior mean which can be used for point-wise predictions. Finally, we demonstrate the advantages of CNR over classical competitors using synthetic and real world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源