论文标题

线性源可逆双模型和绿色对应关系

Linear source invertible bimodules and Green correspondence

论文作者

Linckelmann, Markus, Livesey, Michael

论文摘要

我们表明,绿色对应诱导了线性源PICARD组$ \ MATHCAL {l}(b)$ b $的有限组代数的$ \ MathCal {l}(b)$引起的注射组同构,直线源PICARD组$ \ MATHCAL $ \ MATHCAL {l}(l}(l})(c)$ c $ c $是$ c $ brauer的brauer of $ b $。此同态映射琐碎的源PICARD组$ \ MATHCAL {t}(b)$ $ to to to Trivial Source PICARD组$ \ MATHCAL {t}(t}(c)$。我们进一步表明,内皮源源PICARD组$ \ MATHCAL {E}(b)$是根据$ b $的缺陷组进行的,并且当$ b $具有正常缺陷组$ \ MATHCAL $ \ MATHCAL {E}(b)= \ MATHCAL = \ MATHCAL {l}(l}(b)$。最后,我们证明,任何可逆的$ b $ bimodule的排名都受$ b $的界限。

We show that the Green correspondence induces an injective group homomorphism from the linear source Picard group $\mathcal{L}(B)$ of a block $B$ of a finite group algebra to the linear source Picard group $\mathcal{L}(C)$, where $C$ is the Brauer correspondent of $B$. This homomorphism maps the trivial source Picard group $\mathcal{T}(B)$ to the trivial source Picard group $\mathcal{T}(C)$. We show further that the endopermutation source Picard group $\mathcal{E}(B)$ is bounded in terms of the defect groups of $B$ and that when $B$ has a normal defect group $\mathcal{E}(B)=\mathcal{L}(B)$. Finally we prove that the rank of any invertible $B$-bimodule is bounded by that of $B$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源