论文标题

使用4D OCT图像数据进行运动估算的时空深度学习方法

Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT Image Data

论文作者

Bengs, Marcel, Gessert, Nils, Schlüter, Matthias, Schlaefer, Alexander

论文摘要

目的。本地化结构和估计特定目标区域的运动是手术干预期间导航的常见问题。光学相干断层扫描(OCT)是一种成像方式,具有高空间和时间分辨率,用于术中成像,也用于运动估计,例如在眼科手术或凝血造口术的背景下。最近,已经使用深度学习方法研究了模板和移动OCT图像之间的运动估计,以克服常规,基于特征的方法的缺点。 方法。我们研究使用OCT图像量的时间流是否可以改善基于深度学习的运动估计性能。为此,我们设计和评估了几种3D和4D深度学习方法,并提出了一种新的深度学习方法。另外,我们在模型输出上提出了一种时间正则化策略。 结果。使用没有其他标记的组织数据集,我们使用4D数据的深度学习方法优于先前的方法。表现最佳的4D体系结构的相关系数(ACC)为98.58%,而先前的3D深度学习方法的85.0%。此外,我们在产出时的时间正则化策略进一步提高了4D模型性能,达到99.06%。特别是,我们的4D方法非常适合更大的运动,并且在图像旋转和运动扭曲方面具有鲁棒性。 结论。我们提出了基于OCT的运动估计的4D时空深度学习。在组织数据集上,我们发现使用4D信息进行模型输入可以提高性能,同时保持合理的推理时间。我们的正则化策略表明,在模型输出方面,其他时间信息也有益。

Purpose. Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions. Optical coherence tomography (OCT) is an imaging modality with a high spatial and temporal resolution that has been used for intraoperative imaging and also for motion estimation, for example, in the context of ophthalmic surgery or cochleostomy. Recently, motion estimation between a template and a moving OCT image has been studied with deep learning methods to overcome the shortcomings of conventional, feature-based methods. Methods. We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance. For this purpose, we design and evaluate several 3D and 4D deep learning methods and we propose a new deep learning approach. Also, we propose a temporal regularization strategy at the model output. Results. Using a tissue dataset without additional markers, our deep learning methods using 4D data outperform previous approaches. The best performing 4D architecture achieves an correlation coefficient (aCC) of 98.58% compared to 85.0% of a previous 3D deep learning method. Also, our temporal regularization strategy at the output further improves 4D model performance to an aCC of 99.06%. In particular, our 4D method works well for larger motion and is robust towards image rotations and motion distortions. Conclusions. We propose 4D spatio-temporal deep learning for OCT-based motion estimation. On a tissue dataset, we find that using 4D information for the model input improves performance while maintaining reasonable inference times. Our regularization strategy demonstrates that additional temporal information is also beneficial at the model output.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源