论文标题

将最小标签的施泰纳树问题应用于遗传算法

Devolutionary genetic algorithms with application to the minimum labeling Steiner tree problem

论文作者

Dehouche, Nassim

论文摘要

本文表征并讨论了权力下放的遗传算法,并评估了它们在解决最小标记施泰纳树(MLST)问题方面的性能。我们将权力下放算法定义为通过随着时间的推移将一系列超优势不可行的解决方案进行分配来达到可行解决方案的过程。我们声称将它们与广泛使用的进化算法区分开是相关的。最重要的区别在于,在以前类型的过程中,价值函数在连续生成的解决方案中降低,从而为计算过程提供了自然的停止条件。我们展示了如何适应经典的进化概念,例如交叉,突变和健身,旨在在第一代可行解决方案中达到最佳或近距离的解决方案。我们还引入了MLST问题的新型整数线性编程公式,以及用于加速发光过程的有效约束。最后,我们进行了一项实验,将权力算法的性能与用于求解MLST问题随机生成的实例的最新方法的性能。该实验的结果支持将权力算法用于MLST问题及其在其他NP-HARD组合优化问题中的开发。

This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem. We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time. We claim that distinguishing them from the widely used evolutionary algorithms is relevant. The most important distinction lies in the fact that in the former type of processes, the value function decreases over successive generation of solutions, thus providing a natural stopping condition for the computation process. We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution among the first generations of feasible solutions. We additionally introduce a novel integer linear programming formulation of the MLST problem and a valid constraint used for speeding up the devolutionary process. Finally, we conduct an experiment comparing the performances of devolutionary algorithms to those of state of the art approaches used for solving randomly generated instances of the MLST problem. Results of this experiment support the use of devolutionary algorithms for the MLST problem and their development for other NP-hard combinatorial optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源