论文标题

平面图中长度四的最大路径数

The Maximum Number of Paths of Length Four in a Planar Graph

论文作者

Ghosh, Debarun, Győri, Ervin, Martin, Ryan R., Paulos, Addisu, Salia, Nika, Xiao, Chuanqi, Zamora, Oscar

论文摘要

令$ f(n,h)$表示$ n $ vertex平面图中$ h $的最大副本数量。 $ f(n,p_k)$的数量级,其中$ p_k $是$ k $ vertices上的路径,为$ n^{{\ lfloor {\ frac {\ frac {k-1} {2}} {2}}} \ rfloor} +1}+。在本文中,我们确定$ f(n,p_5)$的渐近值,并为更长的路径提供猜想。

Let $f(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. The order of magnitude of $f(n,P_k)$, where $P_k$ is a path on $k$ vertices, is $n^{{\lfloor{\frac{k-1}{2}}\rfloor}+1}$. In this paper we determine the asymptotic value of $f(n,P_5)$ and give conjectures for longer paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源