论文标题

使用深度学习的高分辨率6x6毫米OCT血管造影的重建

Reconstruction of high-resolution 6x6-mm OCT angiograms using deep learning

论文作者

Gao, Min, Guo, Yukun, Hormel, Tristan T., Sun, Jiande, Hwang, Thomas, Jia, Yali

论文摘要

商业设备上的典型光学相干性层析成绩(八八)采集区为3x3或6x6毫米。与适当采样密度的3x3毫米血管造影相比,6x6-mm血管造影的扫描质量显着降低,信噪比降低,并且由于散发采样而导致的阴影伪像较差。在这里,我们提出了一个基于深度学习的高分辨率血管造影重建网络(HARNET),以生成增强的6x6毫米浅表血管复合物(SVC)血管造影。该网络接受了来自同一眼睛的3x3毫米和6x6毫米血管造影的数据培训。与原始图像相比,重建的6x6毫米血管造影的噪声强度明显较低,血管连接更好。该算法未在原始血管造影显示的噪声水平上产生错误的流信号。我们的算法产生的图像增强可能会改善生物标志物测量值和6x6毫米八粒的定性临床评估。

Typical optical coherence tomographic angiography (OCTA) acquisition areas on commercial devices are 3x3- or 6x6-mm. Compared to 3x3-mm angiograms with proper sampling density, 6x6-mm angiograms have significantly lower scan quality, with reduced signal-to-noise ratio and worse shadow artifacts due to undersampling. Here, we propose a deep-learning-based high-resolution angiogram reconstruction network (HARNet) to generate enhanced 6x6-mm superficial vascular complex (SVC) angiograms. The network was trained on data from 3x3-mm and 6x6-mm angiograms from the same eyes. The reconstructed 6x6-mm angiograms have significantly lower noise intensity and better vascular connectivity than the original images. The algorithm did not generate false flow signal at the noise level presented by the original angiograms. The image enhancement produced by our algorithm may improve biomarker measurements and qualitative clinical assessment of 6x6-mm OCTA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源