论文标题
广告群:域自适应人员重新识别的增强判别聚类
AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-identification
论文作者
论文摘要
域自适应人员重新识别(RE-ID)是一项具有挑战性的任务,尤其是当目标领域中的人身份未知时。现有的方法试图通过转移图像样式或对齐特征分布在范围内解决这一挑战,而目标域中富含标记的样品的较丰富的样本则没有充分利用。本文介绍了一种新颖的增强歧视性聚类(AD群集)技术,该技术估算和增强了目标域中的人群,并通过增强群集来实施重新ID模型的歧视能力。通过基于迭代密度的聚类,自适应样本增强和歧视性特征学习,AD-CLUST进行了训练。它学习了一个图像发生器和特征编码器,旨在最大程度地提高样品空间中的群集内多样性,并以对抗性的最低最大最大程度的方式最大程度地减少特征空间中的群集内距离。最后,AD群集增加了样本簇的多样性,并大大提高了Re-ID模型的歧视能力。市场1501和DUKEMTMC-REID的广泛实验表明,AD群众的表现优于最先进的利润率。
Domain adaptive person re-identification (re-ID) is a challenging task, especially when person identities in target domains are unknown. Existing methods attempt to address this challenge by transferring image styles or aligning feature distributions across domains, whereas the rich unlabeled samples in target domains are not sufficiently exploited. This paper presents a novel augmented discriminative clustering (AD-Cluster) technique that estimates and augments person clusters in target domains and enforces the discrimination ability of re-ID models with the augmented clusters. AD-Cluster is trained by iterative density-based clustering, adaptive sample augmentation, and discriminative feature learning. It learns an image generator and a feature encoder which aim to maximize the intra-cluster diversity in the sample space and minimize the intra-cluster distance in the feature space in an adversarial min-max manner. Finally, AD-Cluster increases the diversity of sample clusters and improves the discrimination capability of re-ID models greatly. Extensive experiments over Market-1501 and DukeMTMC-reID show that AD-Cluster outperforms the state-of-the-art with large margins.