论文标题
二维十二面体模型的角转移矩阵重新归一化组分析
Corner transfer matrix renormalization group analysis of the two-dimensional dodecahedron model
论文作者
论文摘要
我们研究了方格上十二面体模型的相变。该模型是经典海森堡模型的离散类似物,该模型具有连续的$ O(3)$对称性。为了处理大型现场自由度$ q = 20 $,我们为角传递矩阵重新归一化组方法开发了一种大规模并行的数值算法,并结合了eigenexa,eigenexa是高性能并行的eigensolver。相对于截止维度的缩放分析表明,在$ t^{〜} _ {\ rm c} = 0.4398(8)$的二阶相变为关键指数$ν= 2.88(8)$和$β= 0.21(1)$。该系统的中心费用估计为$ C = 1.99(6)$。
We investigate the phase transition of the dodecahedron model on the square lattice. The model is a discrete analogue of the classical Heisenberg model, which has continuous $O(3)$ symmetry. In order to treat the large on-site degree of freedom $q = 20$, we develop a massively parallelized numerical algorithm for the corner transfer matrix renormalization group method, incorporating EigenExa, the high-performance parallelized eigensolver. The scaling analysis with respect to the cutoff dimension reveals that there is a second-order phase transition at $T^{~}_{\rm c}=0.4398(8)$ with the critical exponents $ν=2.88(8)$ and $β=0.21(1)$. The central charge of the system is estimated as $c=1.99(6)$.