论文标题

连续时间在速度领域中随机行走:域生长的作用,galilei不变的对流扩散和粒子混合动力学

Continuous Time Random Walk in a velocity field: Role of domain growth, Galilei-invariant advection-diffusion, and kinetics of particle mixing

论文作者

Vot, F. Le, Abad, E., Metzler, R., Yuste, S. B.

论文摘要

当随机步行者在一个均匀生长的域中的速度场偏置时,我们考虑可分离连续时间随机行走(CTRW)的动力学。这些结构域的混凝土示例包括生长的生物细胞或脂质囊泡,生物膜和组织,以及宏观系统,例如在雨季期间膨胀的含水层或扩展的宇宙。所考虑的CTRW可以屈服,正常扩散或超级开发,包括特定的莱维飞行案例。我们首先考虑零速度场的情况。在次延伸的情况下,我们揭示了粒子概率密度函数的峰度的有趣时间依赖性。特别是,对于合适的参数选择,我们发现在短时间内被脂肪的传播器可能越过高斯样的传播器。随后,我们结合了速度场的效果,并得出了编码粒子分布时间演变的双分裂扩散 - 添加方程。我们将此方程式用于研究两种扩散脉冲的混合动力学,它们的峰在作用于相反方向的速度场的作用下相互移动。峰的这种确定性运动以及每个脉冲的扩散扩散倾向于增加粒子的混合,从而抵消了域生长引起的峰分离。由于这项竞争,出现了不同的混合制度。对于Lévy航班,除了非混合制度之外,一个长期限制的混合态度除了确切的参数选择:在其中一个制度中,混合主要由扩散扩散驱动,而在另一个方案中,混合驱动是由速度场控制在每个脉冲上。讨论了对实际系统中相遇反应的可能影响。

We consider the dynamics of a separable Continuous Time Random Walk (CTRW) when the random walker is biased by a velocity field in a uniformly growing domain. Concrete examples for such domains include growing biological cells or lipid vesicles, biofilms and tissues, but also macroscopic systems such as expanding aquifers during rainy periods, or the expanding universe. The considered CTRW can be subdiffusive, normal diffusive or superdiffusive, including the particular case of a Lévy flight. We first consider the case of zero velocity field. In the subdiffusive case, we reveal an interesting time dependence of the kurtosis of the particle probability density function. In particular, for a suitable parameter choice, we find that the propagator, which is fat tailed at short times, may cross over to a Gaussian-like propagator. We subsequently incorporate the effect of the velocity field and derive a bi-fractional diffusion-advection equation encoding the time evolution of the particle distribution. We apply this equation to study the mixing kinetics of two diffusing pulses, whose peaks move towards each other under the action of velocity fields acting in opposite directions. This deterministic motion of the peaks, together with the diffusive spreading of each pulse, tends to increase particle mixing, thereby counteracting the peak separation induced by the domain growth. As a result of this competition, different regimes of mixing arise. In the case of Lévy flights, apart from the non-mixing regime, one has two different mixing regimes in the long-time limit, depending on the exact parameter choice: In one of these regimes, mixing is mainly driven by diffusive spreading, while in the other mixing is controlled by the velocity fields acting on each pulse. Possible implications for encounter-controlled reactions in real systems are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源