论文标题

从3D视频中实现了现实的大规模高深度除尘数据集

Realistic Large-Scale Fine-Depth Dehazing Dataset from 3D Videos

论文作者

Li, Ruoteng, Zhang, Xiaoyi, You, Shaodi, Li, Yu

论文摘要

Dimage Dehazing是计算机视觉和机器学习中重要且流行的主题之一。对于许多应用程序,例如自主驾驶,安全监视等,一种可靠的实时飞行方法具有可靠的性能。许多现有作品通过使用Haze Imaging模型从普通RGBD数据集的深度呈现雾度来损害这种困难来产生朦胧的图像。但是,合成数据集和真实朦胧的图像之间仍然存在差距,因为具有高质量深度的大数据集主要是室内,室外的深度图是不精确的。在本文中,我们使用了一个新的,大型且多样化的数据集对现有数据集进行补充,该数据集包含来自高清(HD)3D电影的真实户外场景。我们选择了大量的真实户外场景的高质量框架,并使用立体声的深度在其上呈现雾霾。我们的数据集显然比现有的数据集更现实,更多样化,具有更好的视觉质量。更重要的是,我们证明,使用此数据集可以大大提高真实场景的飞行性能。除数据集外,我们还评估了提出的基准测试数据集上的一系列最新方法。

Image dehazing is one of the important and popular topics in computer vision and machine learning. A reliable real-time dehazing method with reliable performance is highly desired for many applications such as autonomous driving, security surveillance, etc. While recent learning-based methods require datasets containing pairs of hazy images and clean ground truth, it is impossible to capture them in real scenes. Many existing works compromise this difficulty to generate hazy images by rendering the haze from depth on common RGBD datasets using the haze imaging model. However, there is still a gap between the synthetic datasets and real hazy images as large datasets with high-quality depth are mostly indoor and depth maps for outdoor are imprecise. In this paper, we complement the existing datasets with a new, large, and diverse dehazing dataset containing real outdoor scenes from High-Definition (HD) 3D movies. We select a large number of high-quality frames of real outdoor scenes and render haze on them using depth from stereo. Our dataset is clearly more realistic and more diversified with better visual quality than existing ones. More importantly, we demonstrate that using this dataset greatly improves the dehazing performance on real scenes. In addition to the dataset, we also evaluate a series state of the art methods on the proposed benchmarking datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源