论文标题

深键形生成的独家层次解码

Exclusive Hierarchical Decoding for Deep Keyphrase Generation

论文作者

Chen, Wang, Chan, Hou Pong, Li, Piji, King, Irwin

论文摘要

KeyPhrase生成(KG)旨在将文档的主要思想总结为一组键形。最近将一个新设置引入了此问题,在该问题中,鉴于文档,该模型需要预测一组键形,并同时确定要产生的钥匙声数量的适当数量。此设置中的先前工作采用了一个顺序解码过程来生成钥匙声。但是,这种解码方法忽略了文档的键形组中存在的固有层次组成性。此外,以前的工作倾向于生成重复的键形,这会浪费时间和计算资源。为了克服这些局限性,我们提出了一个独特的层次解码框架,其中包括分层解码过程以及软或硬排除机制。层次解码过程是明确对键形组集的层次组成性进行建模。软和硬排除机制都在窗口大小内跟踪先前预测的键形,以增强生成的键形酶的多样性。在多个KG基准数据集上进行的广泛实验证明了我们方法生成较少重复和更准确的键形的有效性。

Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases. A new setting is recently introduced into this problem, in which, given a document, the model needs to predict a set of keyphrases and simultaneously determine the appropriate number of keyphrases to produce. Previous work in this setting employs a sequential decoding process to generate keyphrases. However, such a decoding method ignores the intrinsic hierarchical compositionality existing in the keyphrase set of a document. Moreover, previous work tends to generate duplicated keyphrases, which wastes time and computing resources. To overcome these limitations, we propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism. The hierarchical decoding process is to explicitly model the hierarchical compositionality of a keyphrase set. Both the soft and the hard exclusion mechanisms keep track of previously-predicted keyphrases within a window size to enhance the diversity of the generated keyphrases. Extensive experiments on multiple KG benchmark datasets demonstrate the effectiveness of our method to generate less duplicated and more accurate keyphrases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源