论文标题
Grünbaum的一般多型的下限猜想的证明
A Proof of Grünbaum's Lower Bound Conjecture for general polytopes
论文作者
论文摘要
1967年,格伦鲍姆(Grünbaum)猜想,与$ d+s \ leq 2d $ vertices的任何$ d $ d $ d $二维的多层人物至少具有至少\ [ϕ_k(d+s,d)= {d+1 \ 1 \ 1 \ select k+1}+{d}+{d+{d \ deps k+1}}} - 我们证明了这种猜想,也表征了平等所拥有的案例。
In 1967, Grünbaum conjectured that any $d$-dimensional polytope with $d+s\leq 2d$ vertices has at least \[ϕ_k(d+s,d) = {d+1 \choose k+1 }+{d \choose k+1 }-{d+1-s \choose k+1 } \] $k$-faces. We prove this conjecture and also characterize the cases in which equality holds.