论文标题

温斯托克不平等的稳定性和不稳定性问题

Stability and instability issues of the Weinstock inequality

论文作者

Bucur, Dorin, Nahon, Mickaël

论文摘要

给定两个平面,共形,平滑的打开集$ω$和$ω$,我们证明存在一系列平滑序列$ω_n$,几何粒子收敛到$ω$,并且(周范围的)steklov eigenvalues $ω_n$ to $ω_n$会收敛到$ω$的$ω$。结果,我们回答了Girouard和Polterovich提出的关于Weinstock不平等的稳定性提出的问题,并证明不平等是真正不稳定的。但是,根据一些与边界振荡有关的几何形状的先验知识,可能会发生稳定性。

Given two planar, conformal, smooth open sets $Ω$ and $ω$, we prove the existence of a sequence of smooth sets $Ω_n$ which geometrically converges to $Ω$ and such that the (perimeter normalized) Steklov eigenvalues of $Ω_n$ converge to the ones of $ω$. As a consequence, we answer a question raised by Girouard and Polterovich on the stability of the Weinstock inequality and prove that the inequality is genuinely unstable. However, under some a priori knowledge of the geometry related to the oscillations of the boundaries, stability may occur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源