论文标题
多部分纠缠验证的合成安全性
Composable Security for Multipartite Entanglement Verification
论文作者
论文摘要
我们提出了一项合成的安全协议,允许$ n $ party方测试由可能不诚实政党控制的纠缠生成资源。该测试仅包括本地量子操作和一旦共享状态在它们之间共享状态并提供可组合安全性的经典经典通信,即,它可以用作较大通信协议中的$ n $诚实派对的安全子例程,以测试源是否共享至少$ε$ close to to ghz State的量子状态。这一说法是在以前的结果验证验证的先前结果之上,在通常的基于游戏的模型中对安全性进行了研究。在这里,我们改进了协议,使其更适合在量子网络中实际使用,并在抽象密码框架中研究其安全性,以突出合成性问题并避免隐藏的假设。该框架是一种自上而下的理论,它可以明确说明每个组件(派对或资源)在协议的每个时间步中获得的任何信息。此外,在此设置中,可以免费合并任何安全性证明,这相当于具有所需安全属性的理想资源(直至本地仿真)和代表协议的具体资源之间显示不可区分的性。这使我们能够轻松地构成我们的基本协议,以创建一个合成安全的多轮协议,即使在存在嘈杂或恶意的来源的情况下,也使诚实的各方获得接近GHz状态或流产信号的状态。我们的协议通常可以用作量子Internet中的子例程,在执行通信或计算协议之前,在网络中安全共享GHz状态。
We present a composably secure protocol allowing $n$ parties to test an entanglement generation resource controlled by a possibly dishonest party. The test consists only in local quantum operations and authenticated classical communication once a state is shared among them and provides composable security, namely it can be used as a secure subroutine by $n$ honest parties within larger communication protocols to test if a source is sharing quantum states that are at least $ε$-close to the GHZ state. This claim comes on top of previous results on multipartite entanglement verification where the security was studied in the usual game-based model. Here, we improve the protocol to make it more suitable for practical use in a quantum network and we study its security in the Abstract Cryptography framework to highlight composability issues and avoid hidden assumptions. This framework is a top-to-bottom theory that makes explicit any piece of information that each component (party or resource) gets at every time-step of the protocol. Moreover any security proof, which amounts to showing indistinguishability between an ideal resource having the desired security properties (up to local simulation) and the concrete resource representing the protocol, is composable for free in this setting. This allows us to readily compose our basic protocol in order to create a composably secure multi-round protocol enabling honest parties to obtain a state close to a GHZ state or an abort signal, even in the presence of a noisy or malicious source. Our protocol can typically be used as a subroutine in a Quantum Internet, to securely share a GHZ state among the network before performing a communication or computation protocol.