论文标题
分类和生成:使用图像世代的分类潜在空间表示形式
Classify and Generate: Using Classification Latent Space Representations for Image Generations
论文作者
论文摘要
利用分类潜在空间信息进行下游重建和生成是一个有趣的区域。通常,判别性表示富含特定于班级的特征,但对于重建而言太少了,而在自动编码器中,表示形式很密集,但具有有限的特定于类的特定特定特征,使其不适合分类。在这项工作中,我们提出了一个歧视性建模框架,该框架采用操纵的监督潜在表示来重建并生成属于给定类别的新样本。与旨在建模数据歧管分布建模的生成建模方法(例如GAN和VAE)不同,基于表示形式的世代(Regene)直接代表分类空间中给定的数据歧管。在某些约束下,这种监督的表示形式允许使用适当的解码器进行重建和受控的世代,而无需执行任何先前的分发。从理论上讲,给定课程,我们表明,使用凸组合巧妙地操纵这些表示形式会保留相同的类标签。此外,它们还导致了视觉上逼真的图像的新一代。在不同决议的数据集上进行的广泛实验表明,与现有的条件生成模型相比,Regene具有更高的分类精度,而在FID方面具有竞争力。
Utilization of classification latent space information for downstream reconstruction and generation is an intriguing and a relatively unexplored area. In general, discriminative representations are rich in class-specific features but are too sparse for reconstruction, whereas, in autoencoders the representations are dense but have limited indistinguishable class-specific features, making them less suitable for classification. In this work, we propose a discriminative modeling framework that employs manipulated supervised latent representations to reconstruct and generate new samples belonging to a given class. Unlike generative modeling approaches such as GANs and VAEs that aim to model the data manifold distribution, Representation based Generations (ReGene) directly represent the given data manifold in the classification space. Such supervised representations, under certain constraints, allow for reconstructions and controlled generations using an appropriate decoder without enforcing any prior distribution. Theoretically, given a class, we show that these representations when smartly manipulated using convex combinations retain the same class label. Furthermore, they also lead to the novel generation of visually realistic images. Extensive experiments on datasets of varying resolutions demonstrate that ReGene has higher classification accuracy than existing conditional generative models while being competitive in terms of FID.