论文标题

芯片自旋轨道控制的量子发射器的激发与混合等离激元纳米电路的量子发射器

On-Chip Spin-Orbit Controlled Excitation of Quantum Emitters Coupled to Hybrid Plasmonic Nanocircuits

论文作者

Kan, Y. H., Kumar, Shailesh, Ding, Fei, Zhao, C. Y., Bozhevolnyi, Sergey I.

论文摘要

复杂光子功能的片上实现对于在平面综合纳米光子学中进一步进步至关重要,尤其是在涉及非经典光源(例如量子发射器(QES))时。与QE集成的混合等离激元纳米电路一直引起了很大的关注,因为有明显提高量化量化量化量化强的发射速率和微型量子纳米光子成分的前景。在传统和量子纳米光子学中,越来越多地探索了亚波长度上的自旋轨道相互作用,以实现和利用光的旋转依赖性光流。在这里,我们提出并实现了一个介电载荷的等离子纳米电路,该等离子纳米电路由一个刺激的自旋轨道耦合器组成,用于将泵辐射的单向路由进入分支QE量化QE的整合波导。 We demonstrate experimentally the circular-polarization controlled coupling of 532-nm pump laser light into polymer-loaded branched waveguides followed by the excitation of spatially separated (by a distance of ~ 10 μm) QEs, nanodiamonds, with multiple nitrogen vacancy centres, that are embedded in and efficiently coupled to the corresponding waveguides.与分支波导耦合的不同QE的片上自旋轨道控制的激发的实现为设计复杂的量子等离激元纳米电路开辟了新的途径,从而利用手性量子纳米光子学内的自旋自由度。

On-chip realization of complex photonic functionalities is essential for further progress in planar integrated nanophotonics, especially when involving nonclassical light sources such as quantum emitters (QEs). Hybrid plasmonic nanocircuits integrated with QEs have been attracting considerable attention due to the prospects of significantly enhancing QE emission rates and miniaturizing quantum nanophotonic components. Spin-orbit interactions on subwavelength scales have been increasingly explored in both conventional and quantum nanophotonics for realization and utilization of the spin-dependent flow of light. Here, we propose and realize a dielectric-loaded plasmonic nanocircuit consisting of an achiral spin-orbit coupler for unidirectional routing of pump radiation into branched QE-integrated waveguides. We demonstrate experimentally the circular-polarization controlled coupling of 532-nm pump laser light into polymer-loaded branched waveguides followed by the excitation of spatially separated (by a distance of ~ 10 μm) QEs, nanodiamonds, with multiple nitrogen vacancy centres, that are embedded in and efficiently coupled to the corresponding waveguides. The realization of on-chip spin-orbit controlled excitation of different QEs coupled to branched waveguides opens new avenues for designing complex quantum plasmonic nanocircuits exploiting the spin degree of freedom within chiral quantum nanophotonics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源