论文标题

来自深神经网络的液态水的拉曼光谱和极化性

Raman Spectrum and Polarizability of Liquid Water from Deep Neural Networks

论文作者

Sommers, Grace M., Andrade, Marcos F. Calegari, Zhang, Linfeng, Wang, Han, Car, Roberto

论文摘要

我们介绍了基于机器学习和深层神经网络的方案,以模拟绝缘材料中电子极化性的环境依赖性。在液态水中的应用表明,用相对较少的分子构型训练网络足以预测任意液体构型的极化,这与从头算密度密度的功能理论计算密切一致。结合原子间势能表面的神经网络表示,该方案使我们能够在H2O和D2O的不同温度下沿2纳秒经典轨迹计算拉曼光谱。机器学习方法提供的效率的巨大提高可以使较长的轨迹和更大的系统大小相对于从头算法,从而减少了统计误差并改善了低频拉曼光谱的分辨率。将光谱分解为分子内和分子间贡献,阐明了低频和拉伸模式的温度依赖性背后的机制。

We introduce a scheme based on machine learning and deep neural networks to model the environmental dependence of the electronic polarizability in insulating materials. Application to liquid water shows that training the network with a relatively small number of molecular configurations is sufficient to predict the polarizability of arbitrary liquid configurations in close agreement with ab initio density functional theory calculations. In combination with a neural network representation of the interatomic potential energy surface,the scheme allows us to calculate the Raman spectra along 2-nanosecond classical trajectories at different temperatures for H2O and D2O. The vast gains in efficiency provided by the machine learning approach enable longer trajectories and larger system sizes relative to ab initio methods, reducing the statistical error and improving the resolution of the low-frequency Raman spectra. Decomposing the spectra into intramolecular and intermolecular contributions elucidates the mechanisms behind the temperature dependence of the low-frequency and stretch modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源