论文标题
用于动作单位强度估计的热图回归的转移学习方法
A Transfer Learning approach to Heatmap Regression for Action Unit intensity estimation
论文作者
论文摘要
动作单元(AUS)是基于几何的原子面部肌肉运动,已知在特定面部位置产生外观变化。在这一观察结果的推动下,我们提出了一个新型的AU建模问题,该问题包括共同估计其本地化和强度。为此,我们提出了一种基于热图回归的简单而有效的方法,将这两个问题合并为一个任务。热图模型是否在给定的空间位置发生是否发生。为了适应AUS强度的关节建模,我们提出了可变尺寸的热图,其幅度和尺寸根据标记的强度而变化。使用热图回归,我们可以从最近在面部地标定位中见证的进度继承。在两个问题之间的相似性的基础上,我们设计了一种转移学习方法,在该方法中,我们利用了在大规模面部标志数据集中训练的网络的知识。特别是,我们探索了通过a)微调,b)适应层,c)注意图和d)重新构度的不同替代方法了。我们的方法有效地继承了强大的面部对齐网络产生的丰富面部特征,其额外的计算成本最低。我们从经验上验证了我们的系统在三个流行数据集(即BP4D,DISFA和FERA2017)上设置了新的最先进。
Action Units (AUs) are geometrically-based atomic facial muscle movements known to produce appearance changes at specific facial locations. Motivated by this observation we propose a novel AU modelling problem that consists of jointly estimating their localisation and intensity. To this end, we propose a simple yet efficient approach based on Heatmap Regression that merges both problems into a single task. A Heatmap models whether an AU occurs or not at a given spatial location. To accommodate the joint modelling of AUs intensity, we propose variable size heatmaps, with their amplitude and size varying according to the labelled intensity. Using Heatmap Regression, we can inherit from the progress recently witnessed in facial landmark localisation. Building upon the similarities between both problems, we devise a transfer learning approach where we exploit the knowledge of a network trained on large-scale facial landmark datasets. In particular, we explore different alternatives for transfer learning through a) fine-tuning, b) adaptation layers, c) attention maps, and d) reparametrisation. Our approach effectively inherits the rich facial features produced by a strong face alignment network, with minimal extra computational cost. We empirically validate that our system sets a new state-of-the-art on three popular datasets, namely BP4D, DISFA, and FERA2017.