论文标题
使用ASDEX升级SXR系统选择高斯过程层析成像模型的深度学习
Deep learning for Gaussian process tomography model selection using the ASDEX Upgrade SXR system
论文作者
论文摘要
高斯工艺断层扫描(GPT)是一种用于在托卡马克(Tokamak)中获得血浆发射率的实时层析成像重建的方法,并给出了一些模型,用于涉及的基本物理过程。由于贝叶斯形式主义,也可以使用GPT进行模型选择 - 即比较不同的模型并选择具有最大证据的模型。但是,该特定步骤中涉及的计算可能会变得高维度的数据缓慢,尤其是在比较许多不同模型的证据时。使用ASDEX升级软X射线(SXR)诊断收集的测量值,我们训练卷积神经网络(CNN)将SXR层析成像投影映射到证据最高的相应GPT模型。然后,我们将网络的结果以及计算它们的结果与通过分析贝叶斯形式主义获得的时间进行比较。此外,我们使用网络的分类来产生等离子体发射率概况的层析成分重建,我们通过将其投影到测量空间与现有测量本身进行比较来评估其质量。
Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in a tokamak, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform model selection -- i.e., comparing different models and choosing the one with maximum evidence. However, the computations involved in this particular step may become slow for data with high dimensionality, especially when comparing the evidence for many different models. Using measurements collected by the ASDEX Upgrade Soft X-ray (SXR) diagnostic, we train a convolutional neural network (CNN) to map SXR tomographic projections to the corresponding GPT model whose evidence is highest. We then compare the network's results, and the time required to calculate them, with those obtained through analytical Bayesian formalism. In addition, we use the network's classifications to produce tomographic reconstructions of the plasma emissivity profile, whose quality we evaluate by comparing their projection into measurement space with the existing measurements themselves.