论文标题

使用社交媒体量化孕产妇死亡的社区特征

Quantifying Community Characteristics of Maternal Mortality Using Social Media

论文作者

Abebe, Rediet, Giorgi, Salvatore, Tedijanto, Anna, Buffone, Anneke, Schwartz, H. Andrew

论文摘要

尽管美国的大多数死亡率都在下降,但孕产妇死亡率却有所提高,并且是任何经合组织国家中最高的。正在进行广泛的公共卫生研究,以更好地了解相对较高或低率的社区的特征。在这项工作中,我们探讨了社交媒体语言在提供对这种社区特征的见解方面可以发挥的作用。分析美国县产生的与怀孕有关的推文,我们揭示了各种各样的潜在主题,包括晨吐,名人怀孕和堕胎权。我们发现,在Twitter上提及这些主题的速度比标准的社会经济和风险变量(例如收入,种族和对医疗保健的访问权限)的准确性更高,即使在将分析降低到六个主题之后,也可以将其与已知风险因素相关。然后,我们研究社区语言的心理维度,发现使用较低的信任,更加压力和更负面的情感语言与较高的死亡率显着相关,而信任和负面影响也解释了孕产妇死亡中的种族差异的很大一部分。我们讨论了这些见解的潜力,可以在社区层面上为可行的健康干预提供信息。

While most mortality rates have decreased in the US, maternal mortality has increased and is among the highest of any OECD nation. Extensive public health research is ongoing to better understand the characteristics of communities with relatively high or low rates. In this work, we explore the role that social media language can play in providing insights into such community characteristics. Analyzing pregnancy-related tweets generated in US counties, we reveal a diverse set of latent topics including Morning Sickness, Celebrity Pregnancies, and Abortion Rights. We find that rates of mentioning these topics on Twitter predicts maternal mortality rates with higher accuracy than standard socioeconomic and risk variables such as income, race, and access to health-care, holding even after reducing the analysis to six topics chosen for their interpretability and connections to known risk factors. We then investigate psychological dimensions of community language, finding the use of less trustful, more stressed, and more negative affective language is significantly associated with higher mortality rates, while trust and negative affect also explain a significant portion of racial disparities in maternal mortality. We discuss the potential for these insights to inform actionable health interventions at the community-level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源