论文标题
降低经典可整合性$ gl(3)$磁性链的除数
Reduction of divisors for classical superintegrable $GL(3)$ magnetic chain
论文作者
论文摘要
Sklyanin获得的经典$ GL(3)$磁链的分离变量形成了一个通用的正数$ d $ a $ n $ $ n $的$ g $ g $ g $ n hyperelliptic代数曲线。因为$ n> g $此除数$ d $在jacobian中具有唯一的代表性$ρ(d)$,可以使用dim $ | d | = n-g $ sptep构建Abel's算法的步骤。我们研究了相应的除数链的属性,并证明了经典的$ gl(3)$磁性链是一个可整合的系统,具有昏暗的$ | d | = 2 $可促进的汉密尔顿人。
Variables of separation for classical $GL(3)$ magnetic chain obtained by Sklyanin form a generic positive divisor $D$ of degree $n$ on a genus $g$ non-hyperelliptic algebraic curve. Because $n>g$ this divisor $D$ has unique representative $ρ(D)$ in the Jacobian which can be constructed by using dim$|D|=n-g$ steps of Abel's algorithm. We study properties of the corresponding chain of divisors and prove that the classical $GL(3)$ magnetic chain is a superintegrable system with dim$|D|=2$ superintegrable Hamiltonians.