论文标题

使用低级规范多边形分解的无模型状态估计

Model-Free State Estimation Using Low-Rank Canonical Polyadic Decomposition

论文作者

Zamzam, Ahmed S., Liu, Yajing, Bernstein, Andrey

论文摘要

由于电网经历了可再生能源的高渗透水平,因此需要进行基本变化以解决实时情况意识。本文使用张量的独特特征来设计一个无模型的情境意识和分销网络的能量预测框架。这项工作将网络状态在多个时间瞬间作为三向张量。因此,恢复网络的完整状态信息与估计张量的所有值的差异。鉴于从$ $ $ phasor测量单元和/或智能仪表中获得的测量值,使用状态张量的低级规范多核分解进行了未观察到的数量的回收 - 即,在使用测得的量值中使用观察到的模式,将状态估计任务作为张量插入的状态估计任务构成。考虑了两个结构化抽样方案:平板采样和纤维采样。对于这两个方案,我们都介绍了有足够的条件,以保证状态张量因子的可识别性的采样板和纤维数量。数值结果证明了所提出的框架在多个采样方案中实现高估计精度的能力。

As electric grids experience high penetration levels of renewable generation, fundamental changes are required to address real-time situational awareness. This paper uses unique traits of tensors to devise a model-free situational awareness and energy forecasting framework for distribution networks. This work formulates the state of the network at multiple time instants as a three-way tensor; hence, recovering full state information of the network is tantamount to estimating all the values of the tensor. Given measurements received from $μ$phasor measurement units and/or smart meters, the recovery of unobserved quantities is carried out using the low-rank canonical polyadic decomposition of the state tensor---that is, the state estimation task is posed as a tensor imputation problem utilizing observed patterns in measured quantities. Two structured sampling schemes are considered: slab sampling and fiber sampling. For both schemes, we present sufficient conditions on the number of sampled slabs and fibers that guarantee identifiability of the factors of the state tensor. Numerical results demonstrate the ability of the proposed framework to achieve high estimation accuracy in multiple sampling scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源