论文标题

在Schrödinger-Lohe层次结构上,用于聚集及其新兴动态

On the Schrödinger-Lohe hierarchy for aggregation and its emergent dynamics

论文作者

Ha, Seung-Yeal, Park, Hansol

论文摘要

LOHE层次结构是由Kuramoto模型,复杂LOHE球模型,Lohe矩阵模型和LOHE Tensor模型组成的有限维聚合模型的层次结构。相反,Schrödinger-Lohe模型是文献中唯一已知的无限二维LOHE聚合模型。在本文中,我们提供了Schrödinger-Lohe模型与复杂的LOHE球体模型之间的明确联系,然后通过利用这种显式关系,我们构建了Lohe矩阵的无限维升降机和Lohe Tensor模型。通过这种方式,我们建立了与Lohe层次结构的无限维度扩展相对应的Schrödinger-Lohe层次结构。对于拟议的层次结构,我们提供了足够的框架,从而从耦合强度和初始配置方面提供了完整的聚合。

The Lohe hierarchy is a hierarchy of finite-dimensional aggregation models consisting of the Kuramoto model, the complex Lohe sphere model, the Lohe matrix model and the Lohe tensor model. In contrast, the Schrödinger-Lohe model is the only known infinite-dimensional Lohe aggregation model in literature. In this paper, we provide an explicit connection between the Schrödinger-Lohe model and the complex Lohe sphere model, and then by exploiting this explicit relation, we construct infinite-dimensional liftings of the Lohe matrix and the Lohe tensor models. In this way, we establish the Schrödinger-Lohe hierarchy which corresponds to the infinite-dimensional extensions of the Lohe hierarchy. For the proposed hierarchy, we provide sufficient frameworks leading to the complete aggregation in terms of coupling strengths and initial configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源