论文标题
Duffin-Kemmer-Petiau形式主义中逆三阶波算子的路径积分表示。我
Path integral representation for inverse third order wave operator within the Duffin-Kemmer-Petiau formalism. I
论文作者
论文摘要
在带有变形的Duffin-Kemmer-Petiau(DKP)形式上的框架内,开发了Parasuperspace中路径积分表示的方法,用于开发出麦克斯韦外部磁性粒子的绿色功能。 For this purpose a connection between the deformed DKP-algebra and an extended system of the parafermion trilinear commutation relations for the creation and annihilation operators $a^{\pm}_{k}$ and for an additional operator $a_{0}$ obeying para-Fermi statistics of order 2 based on the Lie algebra建立了$ \ mathfrak {so}(2m+2)$。在正交组$ $的发电机方面,运算符$ a_ {0} $的表示形式(2M)$正确地复制了该操作员对Fock空间的状态向量的操作。引入了parafermion相干状态的适当系统,作为para-grassmann数字的函数。通过在进化算子的核中插入相关相位空间中的路径积分来确定有限多物质近似来确定路径积分的过程,该过程就标识的分辨率而言。在parafermion的基础上,相干指出了贡献的矩阵元素在协方差导数$ \ hat {d}_μ$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $以明确的形式计算。为此目的,操作员的矩阵元素$ a^{\ phantom {2}} _ 0 $,$ a_ {0}^{2} $,换向器$ [\ hspace {0.03cm} a^{\ phantom {\ phantom {\ phantom { a^{\ pm} _ {n} \ hspace {0.02cm}] $,$ [\ hspace {0.03cm} a^{2} _ {0} _ {0},a^{\ pm} _ {n} _ {n} $ \ hat {a} \ hspace {0.03cm} [\ hspace {0.03cm} a^{\ phantom {\ phantom {\ pm} \!} _ {0},a^{\ pm} _ {\ pm} _ {n} _ {n} \ equiv \ exp \ hspace {0.02cm} \ bigl(-i \ frac {2π} {3} {3} \,a_ {0} \ bigr)$是初步定义的。
Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism with a deformation, an approach to the construction of the path integral representation in parasuperspace for the Green's function of a spin-1 massive particle in external Maxwell's field is developed. For this purpose a connection between the deformed DKP-algebra and an extended system of the parafermion trilinear commutation relations for the creation and annihilation operators $a^{\pm}_{k}$ and for an additional operator $a_{0}$ obeying para-Fermi statistics of order 2 based on the Lie algebra $\mathfrak{so}(2M+2)$ is established. The representation for the operator $a_{0}$ in terms of generators of the orthogonal group $SO(2M)$ correctly reproducing action of this operator on the state vectors of Fock space is obtained. An appropriate system of the parafermion coherent states as functions of para-Grassmann numbers is introduced. The procedure of the construction of finite-multiplicity approximation for determination of the path integral in the relevant phase space is defined through insertion in the kernel of the evolution operator with respect to para-supertime of resolutions of the identity. In the basis of parafermion coherent states a matrix element of the contribution linear in covariant derivative $\hat{D}_μ$ to the time-dependent Hamilton operator $\hat{\cal H}(τ)$, is calculated in an explicit form. For this purpose the matrix elements of the operators $a^{\phantom{2}}_0$, $a_{0}^{2}$, the commutators $[\hspace{0.03cm}a^{\phantom{\pm}\!}_{0}, a^{\pm}_{n}\hspace{0.02cm}]$, $[\hspace{0.03cm}a^{2}_{0}, a^{\pm}_{n}\hspace{0.02cm}]$, and the product $\hat{A}\hspace{0.03cm}[\hspace{0.03cm}a^{\phantom{\pm}\!}_{0}, a^{\pm}_{n}\hspace{0.02cm}]$ with $\hat{A} \equiv\exp\hspace{0.02cm}\bigl(-i\frac{2π}{3}\,a_{0}\bigr)$, were preliminary defined.