论文标题

NISQ+:通过近似量子误差校正来增强量子计算功率

NISQ+: Boosting quantum computing power by approximating quantum error correction

论文作者

Holmes, Adam, Jokar, Mohammad Reza, Pasandi, Ghasem, Ding, Yongshan, Pedram, Massoud, Chong, Frederic T.

论文摘要

量子计算机的尺寸正在增长,现在正在做出设计决策,试图从这些机器中挤出更多计算。本着这种精神,我们设计了一种方法来通过适应量子误差校正中使用的协议来实现“近似量子误差校正(AQEC)”,从而提高近期量子计算机的计算能力。通过近似拟定的误差校正机制,我们可以增加计算量(Qubits $ \ times $门,或“简单的量子体积(sqv)”)。我们设计的关键是一个快速硬件解码器,可以快速解码检测到的错误综合征。具体而言,我们证明了概念概念证明,可以通过在近期量子系统在线完成近似误差解码,通过设计和实施单频率量子(SFQ)超导逻辑技术中的新算法。这避免了隐藏在所有离线解码方案中的关键解码积压,从而导致程序中T门数的闲置时间指数。 我们的设计每个物理量子都使用一个SFQ处理模块。使用最先进的SFQ合成工具,我们表明电路区域,功率和​​延迟属于当代量子系统设计的约束。在纯dephasing误差模型下,提议的加速器和AQEC解决方案能够通过预期的近期机器在3,402至11,163之间扩展SQV。该解码器实现了$ 5 \%$准确阈值和pseudo-thresholds $ \ sim $ 5 \%,4.75 \%,4.5 \%,$和$ 3.5 \%$ 3.5 \%$ $ $ 3.5 \%$ $ $ 3.5 \%$的物理错误率$ 3、5、7、7,$和$ 9 $。在所研究的最大代码距离上,最多可以实现解码解决方案。通过避免在离线解码器中的指数空闲时间,我们在所需的代码距离中实现了$ 10 $ X的缩小,以实现与替代设计相同的逻辑性能。

Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of near-term quantum computers by adapting protocols used in quantum error correction to implement "Approximate Quantum Error Correction (AQEC)." By approximating fully-fledged error correction mechanisms, we can increase the compute volume (qubits $\times$ gates, or "Simple Quantum Volume (SQV)") of near-term machines. The crux of our design is a fast hardware decoder that can approximately decode detected error syndromes rapidly. Specifically, we demonstrate a proof-of-concept that approximate error decoding can be accomplished online in near-term quantum systems by designing and implementing a novel algorithm in Single-Flux Quantum (SFQ) superconducting logic technology. This avoids a critical decoding backlog, hidden in all offline decoding schemes, that leads to idle time exponential in the number of T gates in a program. Our design utilizes one SFQ processing module per physical qubit. Employing state-of-the-art SFQ synthesis tools, we show that the circuit area, power, and latency are within the constraints of contemporary quantum system designs. Under pure dephasing error models, the proposed accelerator and AQEC solution is able to expand SQV by factors between 3,402 and 11,163 on expected near-term machines. The decoder achieves a $5\%$ accuracy-threshold and pseudo-thresholds of $\sim$ $5\%, 4.75\%, 4.5\%,$ and $3.5\%$ physical error-rates for code distances $3, 5, 7,$ and $9$. Decoding solutions are achieved in a maximum of $\sim 20$ nanoseconds on the largest code distances studied. By avoiding the exponential idle time in offline decoders, we achieve a $10$x reduction in required code distances to achieve the same logical performance as alternative designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源