论文标题

以查询为重点的EHR摘要以帮助成像诊断

Query-Focused EHR Summarization to Aid Imaging Diagnosis

论文作者

McInerney, Denis Jered, Dabiri, Borna, Touret, Anne-Sophie, Young, Geoffrey, van de Meent, Jan-Willem, Wallace, Byron C.

论文摘要

诊断时,电子健康记录(EHR)为放射科医生和其他医生提供了重要的上下文信息。不幸的是,由于给定患者的记录可能包含数百个笔记和报告,因此通常在短时间内识别这些记录和报告中的相关信息非常困难。我们提出和评估模型,从患者记录中提取相关文本片段,以提供一个粗略的案例摘要,旨在帮助医生考虑一个或多个诊断。这很困难,因为直接监督(即,与医疗记录中特定诊断相关的摘要的医师注释)非常昂贵。我们提出了一项遥远的监督策略,在该战略中,我们使用“未来”记录中观察到的国际疾病分类(ICD)代码组为“下游”诊断的嘈杂代理。使用此功能,我们训练基于变压器的神经模型进行以潜在诊断为条件的提取性摘要。该模型定义了一种基于诊断医师提供的潜在诊断(查询)为条件的注意机制。我们(通过远处的监督)训练该模型的变体,从波士顿的Brigham和妇女医院和MIMIC-III(后者促进可重复性)。放射科医生进行的评估表明,这些遥远的监督模型比无监督的方法产生更好的提取摘要。这样的模型可以通过识别过去患者报告中与潜在诊断相关的患者报告中的句子来帮助诊断。

Electronic Health Records (EHRs) provide vital contextual information to radiologists and other physicians when making a diagnosis. Unfortunately, because a given patient's record may contain hundreds of notes and reports, identifying relevant information within these in the short time typically allotted to a case is very difficult. We propose and evaluate models that extract relevant text snippets from patient records to provide a rough case summary intended to aid physicians considering one or more diagnoses. This is hard because direct supervision (i.e., physician annotations of snippets relevant to specific diagnoses in medical records) is prohibitively expensive to collect at scale. We propose a distantly supervised strategy in which we use groups of International Classification of Diseases (ICD) codes observed in 'future' records as noisy proxies for 'downstream' diagnoses. Using this we train a transformer-based neural model to perform extractive summarization conditioned on potential diagnoses. This model defines an attention mechanism that is conditioned on potential diagnoses (queries) provided by the diagnosing physician. We train (via distant supervision) and evaluate variants of this model on EHR data from Brigham and Women's Hospital in Boston and MIMIC-III (the latter to facilitate reproducibility). Evaluations performed by radiologists demonstrate that these distantly supervised models yield better extractive summaries than do unsupervised approaches. Such models may aid diagnosis by identifying sentences in past patient reports that are clinically relevant to a potential diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源