论文标题
通用无源域的适应
Universal Source-Free Domain Adaptation
论文作者
论文摘要
在存在域移位的情况下,有很大的动力来开发多功能学习技术,可以将类分离性的知识从标记的源域转移到未标记的目标域。现有的域适应方法(DA)方法由于依赖源目标标签 - 设定关系的知识(例如,封闭设置,开放式或部分DA)而无法用于实际DA方案。此外,即使在部署过程中,几乎所有先前的无监督的DA工作都需要源和目标样本共存,这使得它们不适合实时适应。没有这种不切实际的假设,我们提出了一个新颖的两阶段学习过程。 1)在采购阶段,我们旨在为未来的无源部署装备该模型,假设没有对即将到来的类别差距和域移动的知识。为了实现这一目标,我们通过在新颖的生成分类器框架中利用可用的源数据来增强模型拒绝源外分发样品的能力。 2)在部署阶段,目标是设计一种能够在各种类别差距上操作的统一适应算法,而无需访问先前看到的源样本。为此,与使用复杂的对抗训练制度的使用相反,我们通过利用一种新型实例级加权机制(称为源相似度度量(SSM))来定义一个简单但有效的无源适应目标。彻底的评估表明,甚至超过了最新的源依赖性方法,提出的学习框架的实际可用性也具有出色的DA性能。
There is a strong incentive to develop versatile learning techniques that can transfer the knowledge of class-separability from a labeled source domain to an unlabeled target domain in the presence of a domain-shift. Existing domain adaptation (DA) approaches are not equipped for practical DA scenarios as a result of their reliance on the knowledge of source-target label-set relationship (e.g. Closed-set, Open-set or Partial DA). Furthermore, almost all prior unsupervised DA works require coexistence of source and target samples even during deployment, making them unsuitable for real-time adaptation. Devoid of such impractical assumptions, we propose a novel two-stage learning process. 1) In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift. To achieve this, we enhance the model's ability to reject out-of-source distribution samples by leveraging the available source data, in a novel generative classifier framework. 2) In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps, with no access to the previously seen source samples. To this end, in contrast to the usage of complex adversarial training regimes, we define a simple yet effective source-free adaptation objective by utilizing a novel instance-level weighting mechanism, named as Source Similarity Metric (SSM). A thorough evaluation shows the practical usability of the proposed learning framework with superior DA performance even over state-of-the-art source-dependent approaches.