论文标题

更多信息:从体积融合中估算6D姿势的多对象推理

MoreFusion: Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion

论文作者

Wada, Kentaro, Sucar, Edgar, James, Stephen, Lenton, Daniel, Davison, Andrew J.

论文摘要

机器人和其他智能设备需要从其板载视觉系统中有效的基于对象的场景表示,以推理有关接触,物理和遮挡的原因。公认的精确对象模型将与未识别结构的非参数重建一起发挥重要作用。我们提出了一个系统,可以估算接触中的多个已知对象的准确姿势,并从实时,体现的多视觉视觉中遮挡。我们的方法使3D对象从单个RGB-D视图中提出了姿势提案,随着相机的移动,从多个视图中累积了姿势估计值和非参数占用信息,并执行关节优化以估算一致的,对于触点中的多个对象的不相互作用的姿势。 我们在2个对象数据集上实验验证方法的准确性和鲁棒性:YCB-VIDEO和我们自己具有挑战性的混乱YCB-VIDEO。我们展示了一种实时机器人技术应用程序,其中仅使用板载RGB-D视觉,可以精确而有序地拆卸复杂的对象。

Robots and other smart devices need efficient object-based scene representations from their on-board vision systems to reason about contact, physics and occlusion. Recognized precise object models will play an important role alongside non-parametric reconstructions of unrecognized structures. We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision. Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves, and performs joint optimization to estimate consistent, non-intersecting poses for multiple objects in contact. We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video. We demonstrate a real-time robotics application where a robot arm precisely and orderly disassembles complicated piles of objects, using only on-board RGB-D vision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源