论文标题

数据可视化的非线性维度降低:一种基于模糊规则的方法

Nonlinear Dimensionality Reduction for Data Visualization: An Unsupervised Fuzzy Rule-based Approach

论文作者

Das, Suchismita, Pal, Nikhil R.

论文摘要

在这里,我们提出了一种基于模糊规则的维度缩小方法,主要用于数据可视化。它考虑了以下与基于缩小尺寸的数据可视化相关的重要问题:(i)保存邻居关系,(ii)处理有关非线性流形的数据,(iii)预测系统的新测试数据点的预测能力,(iv)系统的解释性,以及(V)(V)如果需要,则可以拒绝测试点。为此,我们使用一阶高吉诺类型型号。我们使用输入数据中的群集生成规则前提。在这种情况下,我们还提出了GEODESIC C均值聚类算法的新变体。我们通过最小化将点间的测量距离(歧管上的距离)视为投影空间上的欧几里得距离来估算规则参数。我们将提出的方法应用于三个合成和三个现实世界数据集,并在视觉上将结果与其他四种标准数据可视化方法进行比较。获得的结果表明,所提出的方法的行为可观,并且与与方法相比的性能更好或可比。发现所提出的方法在初始条件下是鲁棒的。通过实验验证了提出的测试点方法的可预测性。我们还评估了我们方法拒绝输出点的能力。然后,我们扩展了此概念,以提供一个通用框架,以学习具有不同目标函数的数据投影的无监督模糊模型。据我们所知,这是使用无监督模糊建模进行分歧学习的首次尝试。

Here, we propose an unsupervised fuzzy rule-based dimensionality reduction method primarily for data visualization. It considers the following important issues relevant to dimensionality reduction-based data visualization: (i) preservation of neighborhood relationships, (ii) handling data on a non-linear manifold, (iii) the capability of predicting projections for new test data points, (iv) interpretability of the system, and (v) the ability to reject test points if required. For this, we use a first-order Takagi-Sugeno type model. We generate rule antecedents using clusters in the input data. In this context, we also propose a new variant of the Geodesic c-means clustering algorithm. We estimate the rule parameters by minimizing an error function that preserves the inter-point geodesic distances (distances over the manifold) as Euclidean distances on the projected space. We apply the proposed method on three synthetic and three real-world data sets and visually compare the results with four other standard data visualization methods. The obtained results show that the proposed method behaves desirably and performs better than or comparable to the methods compared with. The proposed method is found to be robust to the initial conditions. The predictability of the proposed method for test points is validated by experiments. We also assess the ability of our method to reject output points when it should. Then, we extend this concept to provide a general framework for learning an unsupervised fuzzy model for data projection with different objective functions. To the best of our knowledge, this is the first attempt to manifold learning using unsupervised fuzzy modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源