论文标题
分销网格的差异私人最佳功率流
Differentially Private Optimal Power Flow for Distribution Grids
论文作者
论文摘要
尽管分销网格客户有义务与分销系统运营商(DSO)共享其消费数据,但在DSO的操作例程中通常会忽略此数据的可能泄漏。本文介绍了一个保护隐私的最佳功率流(OPF)机制,用于分发网格,该机制可从未经授权的OPF解决方案(例如当前和电压测量)中确保客户隐私。该机制基于差异隐私的框架,该框架通过将精心校准的噪声应用于计算的输出来控制个人在数据集中的参与风险。与现有的私人机制不同,该机制不会将噪声应用于优化参数或其结果。相反,它优化了OPF变量作为随机噪声的仿射函数,从而削弱了网格载荷和OPF变量之间的相关性。为了确保随机OPF解决方案的可行性,该机制利用在网格限制上强制执行的机会限制。进一步扩展了该机制,以控制随机噪声引起的最佳损失以及OPF变量的方差。该论文表明,差异化的OPF解决方案不会泄漏客户加载到指定的参数。
Although distribution grid customers are obliged to share their consumption data with distribution system operators (DSOs), a possible leakage of this data is often disregarded in operational routines of DSOs. This paper introduces a privacy-preserving optimal power flow (OPF) mechanism for distribution grids that secures customer privacy from unauthorised access to OPF solutions, e.g., current and voltage measurements. The mechanism is based on the framework of differential privacy that allows to control the participation risks of individuals in a dataset by applying a carefully calibrated noise to the output of a computation. Unlike existing private mechanisms, this mechanism does not apply the noise to the optimization parameters or its result. Instead, it optimizes OPF variables as affine functions of the random noise, which weakens the correlation between the grid loads and OPF variables. To ensure feasibility of the randomized OPF solution, the mechanism makes use of chance constraints enforced on the grid limits. The mechanism is further extended to control the optimality loss induced by the random noise, as well as the variance of OPF variables. The paper shows that the differentially private OPF solution does not leak customer loads up to specified parameters.