论文标题

通过Attosend瞬时吸收光谱探测的溴化氘的相干电子振动动力学

Coherent electronic-vibrational dynamics in deuterium bromide probed via attosecond transient absorption spectroscopy

论文作者

Kobayashi, Yuki, Chang, Kristina F., Poullain, Sonia Marggi, Scutelnic, Valeriu, Zeng, Tao, Neumark, Daniel M., Leone, Stephen R.

论文摘要

超快激光激发可以触发分子中的多重相干动力学。在这里,我们报告了Attsond瞬时吸收实验,以解决其强场电离之后的原型分子(DBR)的原型分子中的电子和振动动力学的同时探测。离子X $^2π_{3/2} $和x $^2π_{1/2} $中的电子和振动连贯性在Br- $ 3D $ 3D $ CORE级吸收光谱中通过带有12.6-FS和19.9-FS定期的量子级别进行了表征。极化扫描表明,电子量子beat的相位取决于探针方向,从实验表明,相干电子运动对应于沿电离场方向孔密度的振荡。发现振动量子击败可以保持相对恒定的振幅,而电子量子beats则表现出部分减少的时间。量子波包装模拟表明,振动运动的反谐效效应微不足道,因为x $^2π_{3/2} $和x $^2π_{1/2} $势之间的平行关系。 DBR和HBR结果之间的比较表明,旋转运动是导致反应性的原因,因为它导致强场电离制备的初始比对。

Ultrafast laser excitation can trigger multiplex coherent dynamics in molecules. Here, we report attosecond transient absorption experiments addressing simultaneous probing of electronic and vibrational dynamics in a prototype molecule, deuterium bromide (DBr), following its strong-field ionization. Electronic and vibrational coherences in the ionic X$^2Π_{3/2}$ and X$^2Π_{1/2}$ states are characterized in the Br-$3d$ core-level absorption spectra via quantum beats with 12.6-fs and 19.9-fs periodicities, respectively. Polarization scans reveal that the phase of the electronic quantum beats depends on the probe direction, experimentally showing that the coherent electronic motion corresponds to the oscillation of the hole density along the ionization-field direction. The vibrational quantum beats are found to maintain a relatively constant amplitude, whereas the electronic quantum beats exhibit a partial decrease in time. Quantum wave-packet simulations show that the decoherence effect from the vibrational motion is insignificant because of the parallel relation between the X$^2Π_{3/2}$ and X$^2Π_{1/2}$ potentials. A comparison between the DBr and HBr results suggests that rotation motion is responsible for the decoherence since it leads to initial alignment prepared by the strong-field ionization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源