论文标题

在根树上的离散耐铁空间之间的乘法运算符

Multiplication operators between discrete Hardy spaces on rooted trees

论文作者

Muthukumar, P., Shankar, P.

论文摘要

muthukumar和ponnusamy \ cite {mp-tp-paces}在$ \ mathbb {t} _p $ spaces上研究了乘法运算符。在本文中,我们主要考虑在$ \ mathbb {t} _p $和$ \ mathbb {t} _q $($ p \ neq q $)之间的乘法运算符。特别是,我们将有限和紧凑的乘法运算符从$ \ Mathbb {t} _ {p} $到$ \ Mathbb {t} _ {q} $。对于$ p \ neq q $,我们证明没有可逆乘法运算符,从$ \ mathbb {t} _ {p} $到$ \ mathbb {t} _ {q} $,也没有来自$ \ mathbb {t} _ {t} _ {p} $ $ \ mathbb {t} _ {q} $。最后,我们在$ \ mathbb {t} _ {p} $上讨论了乘法运算符的固定点。

Muthukumar and Ponnusamy \cite{MP-Tp-spaces} studied the multiplication operators on $\mathbb{T}_p$ spaces. In this article, we mainly consider multiplication operators between $\mathbb{T}_p$ and $\mathbb{T}_q$ ($p\neq q$). In particular, we characterize bounded and compact multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$. For $p\neq q$, we prove that there are no invertible multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$ and also there are no isometric multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$. Finally, we discuss about fixed points of a multiplication operator on $\mathbb{T}_{p}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源