论文标题
在根树上的离散耐铁空间之间的乘法运算符
Multiplication operators between discrete Hardy spaces on rooted trees
论文作者
论文摘要
muthukumar和ponnusamy \ cite {mp-tp-paces}在$ \ mathbb {t} _p $ spaces上研究了乘法运算符。在本文中,我们主要考虑在$ \ mathbb {t} _p $和$ \ mathbb {t} _q $($ p \ neq q $)之间的乘法运算符。特别是,我们将有限和紧凑的乘法运算符从$ \ Mathbb {t} _ {p} $到$ \ Mathbb {t} _ {q} $。对于$ p \ neq q $,我们证明没有可逆乘法运算符,从$ \ mathbb {t} _ {p} $到$ \ mathbb {t} _ {q} $,也没有来自$ \ mathbb {t} _ {t} _ {p} $ $ \ mathbb {t} _ {q} $。最后,我们在$ \ mathbb {t} _ {p} $上讨论了乘法运算符的固定点。
Muthukumar and Ponnusamy \cite{MP-Tp-spaces} studied the multiplication operators on $\mathbb{T}_p$ spaces. In this article, we mainly consider multiplication operators between $\mathbb{T}_p$ and $\mathbb{T}_q$ ($p\neq q$). In particular, we characterize bounded and compact multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$. For $p\neq q$, we prove that there are no invertible multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$ and also there are no isometric multiplication operators from $\mathbb{T}_{p}$ to $\mathbb{T}_{q}$. Finally, we discuss about fixed points of a multiplication operator on $\mathbb{T}_{p}$.